Upstream Machine Learning in Radiology.
Radiol Clin North Am
; 59(6): 967-985, 2021 Nov.
Article
en En
| MEDLINE
| ID: mdl-34689881
Machine learning (ML) and Artificial intelligence (AI) has the potential to dramatically improve radiology practice at multiple stages of the imaging pipeline. Most of the attention has been garnered by applications focused on improving the end of the pipeline: image interpretation. However, this article reviews how AI/ML can be applied to improve upstream components of the imaging pipeline, including exam modality selection, hardware design, exam protocol selection, data acquisition, image reconstruction, and image processing. A breadth of applications and their potential for impact is shown across multiple imaging modalities, including ultrasound, computed tomography, and MRI.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Radiología
/
Diagnóstico por Imagen
/
Interpretación de Imagen Asistida por Computador
/
Aprendizaje Automático
Tipo de estudio:
Diagnostic_studies
/
Guideline
Límite:
Humans
Idioma:
En
Revista:
Radiol Clin North Am
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos