Your browser doesn't support javascript.
loading
Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors.
Jabeen, Amara; de March, Claire A; Matsunami, Hiroaki; Ranganathan, Shoba.
Afiliación
  • Jabeen A; Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia.
  • de March CA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
  • Matsunami H; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
  • Ranganathan S; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article en En | MEDLINE | ID: mdl-34768977
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores Odorantes / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans / Male Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores Odorantes / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans / Male Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Australia