Your browser doesn't support javascript.
loading
MatrixQCvis: shiny-based interactive data quality exploration for omics data.
Naake, Thomas; Huber, Wolfgang.
Afiliación
  • Naake T; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
  • Huber W; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
Bioinformatics ; 38(4): 1181-1182, 2022 01 27.
Article en En | MEDLINE | ID: mdl-34788796
MOTIVATION: First-line data quality assessment and exploratory data analysis are integral parts of any data analysis workflow. In high-throughput quantitative omics experiments (e.g. transcriptomics, proteomics and metabolomics), after initial processing, the data are typically presented as a matrix of numbers (feature IDs × samples). Efficient and standardized data quality metrics calculation and visualization are key to track the within-experiment quality of these rectangular data types and to guarantee for high-quality datasets and subsequent biological question-driven inference. RESULTS: We present MatrixQCvis, which provides interactive visualization of data quality metrics at the per-sample and per-feature level using R's shiny framework. It provides efficient and standardized ways to analyze data quality of quantitative omics data types that come in a matrix-like format (features IDs × samples). MatrixQCvis builds upon the Bioconductor SummarizedExperiment S4 class and thus facilitates the integration into existing workflows. AVAILABILITY AND IMPLEMENTATION: MatrixQCVis is implemented in R. It is available via Bioconductor and released under the GPL v3.0 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Exactitud de los Datos Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Exactitud de los Datos Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania