Your browser doesn't support javascript.
loading
Promoting biomethane production from propionate with Fe2O3@carbon nanotubes composites.
Yang, Zhi-Man; Guo, Rong-Bo; Dong, Xiao-Huan.
Afiliación
  • Yang ZM; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, PR China. Electronic address: yangzm@fjnu.edu.cn.
  • Guo RB; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
  • Dong XH; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
Sci Total Environ ; 818: 151762, 2022 Apr 20.
Article en En | MEDLINE | ID: mdl-34800454
ABSTRACT
Using a batch anaerobic system constructed with 60 mL serum bottles, potential of a composite material with Fe2O3 nanoparticles decorated on carbon nanotubes (CNTs) to enhance biomethane production was investigated. The composites (Fe2O3@CNTs) with well dispersed Fe2O3 nanoparticles (4.5 nm) were fabricated by a facile thermal decomposition method in a muffle furnace under nitrogen atmosphere. Compared with Fe2O3, Fe2O3@CNTs showed a large specific surface area and good electrical conductivity. Supplementation of Fe2O3@CNTs to the propionate-degrading enrichments enhanced the methane production rate, which was 10.4-fold higher than that in the control experiment without material addition. The addition of Fe2O3@CNTs also not only showed a clearly electrochemical response to flavin and cytochrome C, but also reduced the electron transfer resistance when compared to the control. Comparative analysis showed that Fe2O3 in Fe2O3@CNTs played a key role in initiating electrochemical response and triggering rapid methane production, while CNTs functioned as rapid electron conduits to facilitate electron transfer from iron-reducing bacteria (e.g., Acinetobacter, Syntrophomonas, and Geobacter) to methanogens (e.g. Methanosarcina).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Propionatos / Nanotubos de Carbono Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Propionatos / Nanotubos de Carbono Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article