Your browser doesn't support javascript.
loading
Minimum Message Length Inference of the Exponential Distribution with Type I Censoring.
Makalic, Enes; Schmidt, Daniel Francis.
Afiliación
  • Makalic E; Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Schmidt DF; Faculty of Information Technology, Monash University, Clayton, VIC 3168, Australia.
Entropy (Basel) ; 23(11)2021 Oct 30.
Article en En | MEDLINE | ID: mdl-34828137
Data with censoring is common in many areas of science and the associated statistical models are generally estimated with the method of maximum likelihood combined with a model selection criterion such as Akaike's information criterion. This manuscript demonstrates how the information theoretic minimum message length principle can be used to estimate statistical models in the presence of type I random and fixed censoring data. The exponential distribution with fixed and random censoring is used as an example to demonstrate the process where we observe that the minimum message length estimate of mean survival time has some advantages over the standard maximum likelihood estimate.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Australia