Minimum Message Length Inference of the Exponential Distribution with Type I Censoring.
Entropy (Basel)
; 23(11)2021 Oct 30.
Article
en En
| MEDLINE
| ID: mdl-34828137
Data with censoring is common in many areas of science and the associated statistical models are generally estimated with the method of maximum likelihood combined with a model selection criterion such as Akaike's information criterion. This manuscript demonstrates how the information theoretic minimum message length principle can be used to estimate statistical models in the presence of type I random and fixed censoring data. The exponential distribution with fixed and random censoring is used as an example to demonstrate the process where we observe that the minimum message length estimate of mean survival time has some advantages over the standard maximum likelihood estimate.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Entropy (Basel)
Año:
2021
Tipo del documento:
Article
País de afiliación:
Australia