Your browser doesn't support javascript.
loading
Energy Level Alignment at the Cobalt Phosphate/Electrolyte Interface: Intrinsic Stability vs Interfacial Chemical Reactions in 5 V Lithium Ion Batteries.
Cherkashinin, Gennady; Eilhardt, Robert; Nappini, Silvia; Cococcioni, Matteo; Pís, Igor; Dal Zilio, Simone; Bondino, Federica; Marzari, Nicola; Magnano, Elena; Alff, Lambert.
Afiliación
  • Cherkashinin G; Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany.
  • Eilhardt R; Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany.
  • Nappini S; IOM CNR Laboratorio TASC, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
  • Cococcioni M; Physics Department, University of Pavia, Via Bassi 6, I-27100 Pavia, Italy.
  • Pís I; IOM CNR Laboratorio TASC, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
  • Dal Zilio S; Elettra─Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy.
  • Bondino F; IOM CNR Laboratorio TASC, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
  • Marzari N; IOM CNR Laboratorio TASC, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
  • Magnano E; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Alff L; IOM CNR Laboratorio TASC, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
ACS Appl Mater Interfaces ; 14(1): 543-556, 2022 Jan 12.
Article en En | MEDLINE | ID: mdl-34932299
The intrinsic stability of the 5 V LiCoPO4-LiCo2P3O10 thin-film (carbon-free) cathode material coated with MoO3 thin layer is studied using a comprehensive synchrotron electron spectroscopy in situ approach combined with first-principle calculations. The atomic-molecular level study demonstrates fully reversible electronic properties of the cathode after the first electrochemical cycle. The polyanionic oxide is not involved in chemical reactions with the fluoroethylene-containing liquid electrolyte even when charged to 5.1 V vs Li+/Li. The high stability of the cathode is explained on the basis of the developed energy level model. In contrast, the chemical composition of the cathode-electrolyte interface evolves continuously by involving MoO3 in the decomposition reaction with consequent leaching of oxide from the surface. The proposed mechanisms of chemical reactions are attributed to external electrolyte oxidation via charge transfer from the relevant electron level to the MoO3 valence band state and internal electrolyte oxidation via proton transfer to the solvents. This study provides a deeper insight into the development of both a doping strategy to enhance the electronic conductivity of high-voltage cathode materials and an efficient surface coating against unfavorable interfacial chemical reactions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania