Your browser doesn't support javascript.
loading
A simple strategy for sample annotation error detection in cytometry datasets.
Smithmyer, Megan E; Wiedeman, Alice E; Skibinski, David A G; Savage, Adam K; Acosta-Vega, Carolina; Scheiding, Sheila; Gersuk, Vivian H; O'Rourke, Colin; Long, S Alice; Buckner, Jane H; Speake, Cate.
Afiliación
  • Smithmyer ME; Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Wiedeman AE; Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Skibinski DAG; Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Savage AK; Nexelis, 645 Elliot Avenue West, Suite 300, Seattle, Washington, USA.
  • Acosta-Vega C; Allen Institute for Immunology, Seattle, Washington, USA.
  • Scheiding S; Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Gersuk VH; Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • O'Rourke C; Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Long SA; Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Buckner JH; Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA.
  • Speake C; Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA.
Cytometry A ; 101(4): 351-360, 2022 04.
Article en En | MEDLINE | ID: mdl-34967113
Mislabeling samples or data with the wrong participant information can affect study integrity and lead investigators to draw inaccurate conclusions. Quality control to prevent these types of errors is commonly embedded into the analysis of genomic datasets, but a similar identification strategy is not standard for cytometric data. Here, we present a method for detecting sample identification errors in cytometric data using expression of human leukocyte antigen (HLA) class I alleles. We measured HLA-A*02 and HLA-B*07 expression in three longitudinal samples from 41 participants using a 33-marker CyTOF panel designed to identify major immune cell types. 3/123 samples (2.4%) showed HLA allele expression that did not match their longitudinal pairs. Furthermore, these same three samples' cytometric signature did not match qPCR HLA class I allele data, suggesting that they were accurately identified as mismatches. We conclude that this technique is useful for detecting sample-labeling errors in cytometric analyses of longitudinal data. This technique could also be used in conjunction with another method, like GWAS or PCR, to detect errors in cross-sectional data. We suggest widespread adoption of this or similar techniques will improve the quality of clinical studies that utilize cytometry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estudios Transversales Tipo de estudio: Diagnostic_studies / Observational_studies / Prevalence_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cytometry A Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estudios Transversales Tipo de estudio: Diagnostic_studies / Observational_studies / Prevalence_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cytometry A Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos