A Novel Computational Framework for Precision Diagnosis and Subtype Discovery of Plant With Lesion.
Front Plant Sci
; 12: 789630, 2021.
Article
en En
| MEDLINE
| ID: mdl-35046977
Plants are often attacked by various pathogens during their growth, which may cause environmental pollution, food shortages, or economic losses in a certain area. Integration of high throughput phenomics data and computer vision (CV) provides a great opportunity to realize plant disease diagnosis in the early stage and uncover the subtype or stage patterns in the disease progression. In this study, we proposed a novel computational framework for plant disease identification and subtype discovery through a deep-embedding image-clustering strategy, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm (WDM-tSNE). To verify the effectiveness, we applied our method on four public datasets of images. The results demonstrated that the newly developed tool is capable of identifying the plant disease and further uncover the underlying subtypes associated with pathogenic resistance. In summary, the current framework provides great clustering performance for the root or leave images of diseased plants with pronounced disease spots or symptoms.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Front Plant Sci
Año:
2021
Tipo del documento:
Article
País de afiliación:
China