Your browser doesn't support javascript.
loading
Step Monitor Accuracy During PostStroke Physical Therapy and Simulated Activities.
Henderson, Christopher E; Toth, Lindsay; Kaplan, Andrew; Hornby, T George.
Afiliación
  • Henderson CE; Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN.
  • Toth L; Rehabilitation Hospital of Indiana, Indianapolis, IN.
  • Kaplan A; Department of Clinical and Applied Movement Science, University of North Florida, Jacksonville, FL.
  • Hornby TG; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN.
Article en En | MEDLINE | ID: mdl-35425853
Introduction/Purpose: The amount of stepping activity during rehabilitation post-stroke can predict walking outcomes, although the most accurate methods to evaluate stepping activity are uncertain with conflicting findings on available stepping monitors during walking assessments. Rehabilitation sessions also include non-stepping activities and the ability of activity monitors to differentiate these activities from stepping is unclear. The objective of this study was to examine the accuracy of different activity monitors worn by individuals post-stroke with variable walking speeds during clinical physical therapy (PT) and research interventions focused on walking. Methods: In Part I, 28 participants post-stroke wore a StepWatch, ActiGraph with and without a Low Frequency Extension (LFE) filter, and Fitbit on paretic and non-paretic distal shanks at or above the ankle during clinical PT or research interventions with steps simultaneously hand counted. Mean absolute percent errors were compared between limbs and tasks performed. In Part II, 12 healthy adults completed 8 walking and 9 non-walking tasks observed during clinical PT or research. Data were descriptively analyzed and used to assist interpretation of Part I results. Results: Part I results indicate most devices did not demonstrate an optimal limb configuration during research sessions focused on walking, with larger errors during clinical PT on the non-paretic limb. Using the limb that minimized errors for each device, the StepWatch had smaller errors than the ActiGraph and Fitbit (p<0.01), particularly in those who walked < 0.8 m/s. Conversely, errors from the ActiGraph-LFE demonstrated inconsistent differences in step counts between Fitbit and ActiGraph. Part II results indicate that errors observed during different stepping and non-stepping activities were often device-specific, with non-stepping tasks frequently detected as stepping. Conclusions: The StepWatch and ActiGraph-LFE had smaller errors than the Fitbit or ActiGraph, with greater errors in those walking at slower speeds. Inclusion of non-stepping activities affected step counts and should be considered when measuring stepping activity in individuals post-stroke to predict locomotor outcomes following rehabilitation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Transl J Am Coll Sports Med Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Transl J Am Coll Sports Med Año: 2022 Tipo del documento: Article