Your browser doesn't support javascript.
loading
Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity.
Ricci-Tam, Chiara; Kuipa, Sophia; Kostman, Maya Peters; Aronson, Mark S; Sgro, Allyson E.
Afiliación
  • Ricci-Tam C; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
  • Kuipa S; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
  • Kostman MP; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
  • Aronson MS; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
  • Sgro AE; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA. Electronic address: asgro@bu.edu.
Semin Cell Dev Biol ; 141: 50-62, 2023 05 30.
Article en En | MEDLINE | ID: mdl-35537929
ABSTRACT
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Dictyostelium Límite: Animals / Humans Idioma: En Revista: Semin Cell Dev Biol Asunto de la revista: EMBRIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Dictyostelium Límite: Animals / Humans Idioma: En Revista: Semin Cell Dev Biol Asunto de la revista: EMBRIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos