Your browser doesn't support javascript.
loading
Neoantigen quality predicts immunoediting in survivors of pancreatic cancer.
Luksza, Marta; Sethna, Zachary M; Rojas, Luis A; Lihm, Jayon; Bravi, Barbara; Elhanati, Yuval; Soares, Kevin; Amisaki, Masataka; Dobrin, Anton; Hoyos, David; Guasp, Pablo; Zebboudj, Abderezak; Yu, Rebecca; Chandra, Adrienne Kaya; Waters, Theresa; Odgerel, Zagaa; Leung, Joanne; Kappagantula, Rajya; Makohon-Moore, Alvin; Johns, Amber; Gill, Anthony; Gigoux, Mathieu; Wolchok, Jedd; Merghoub, Taha; Sadelain, Michel; Patterson, Erin; Monasson, Remi; Mora, Thierry; Walczak, Aleksandra M; Cocco, Simona; Iacobuzio-Donahue, Christine; Greenbaum, Benjamin D; Balachandran, Vinod P.
Afiliación
  • Luksza M; Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. marta.luksza@mssm.edu.
  • Sethna ZM; Computational Oncology Service, Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Rojas LA; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Lihm J; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Bravi B; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Elhanati Y; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Soares K; Computational Oncology Service, Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Amisaki M; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
  • Dobrin A; Department of Mathematics, Imperial College London, London, UK.
  • Hoyos D; Computational Oncology Service, Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Guasp P; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Zebboudj A; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Yu R; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Chandra AK; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Waters T; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Odgerel Z; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Leung J; Computational Oncology Service, Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Kappagantula R; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Makohon-Moore A; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Johns A; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Gill A; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Gigoux M; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Wolchok J; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Merghoub T; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Sadelain M; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Patterson E; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Monasson R; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Mora T; Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Walczak AM; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Cocco S; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Iacobuzio-Donahue C; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Greenbaum BD; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Balachandran VP; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nature ; 606(7913): 389-395, 2022 06.
Article en En | MEDLINE | ID: mdl-35589842
Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Supervivientes de Cáncer / Antígenos de Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Supervivientes de Cáncer / Antígenos de Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos