Your browser doesn't support javascript.
loading
Polycyclic Phenol Derivatives from the Leaves of Spermacoce latifolia and Their Antibacterial and α-Glucosidase Inhibitory Activity.
Liu, Shao-Bo; Zeng, Lei; Xu, Qiao-Lin; Chen, Ying-Le; Lou, Tao; Zhang, Shan-Xuan; Tan, Jian-Wen.
Afiliación
  • Liu SB; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
  • Zeng L; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
  • Xu QL; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
  • Chen YL; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
  • Lou T; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
  • Zhang SX; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
  • Tan JW; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
Molecules ; 27(10)2022 May 22.
Article en En | MEDLINE | ID: mdl-35630810
Three new polycyclic phenol derivatives, 2-acetyl-4-hydroxy-6H-furo [2,3-g]chromen-6-one (1), 2-(1',2'-dihydroxypropan-2'-yl)-4-hydroxy-6H-furo [2,3-g][1]benzopyran-6-one (2) and 3,8,10-trihydroxy-4,9-dimethoxy-6H-benzo[c]chromen-6-one (8), along with seven known ones (3-7, 9 and 10) were isolated for the first time from the leaves of Spermacoce latifolia. Their structures were determined by spectroscopic analysis and comparison with literature-reported data. These compounds were tested for their in vitro antibacterial activity against four Gram-(+) bacteria: Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC), Bacillus subtilis (BS), and the Gram-(-) bacterium Escherichia coli. Compounds 1, 2, 5 and 8 showed antibacterial activity toward SA, BC and BS with MIC values ranging from 7.8 to 62.5 µg/mL, but they were inactive to MRSA. Compound 4 not only showed the best antibacterial activity against SA, BC and BS, but it further displayed significant antibacterial activity against MRSA (MIC 1.95 µg/mL) even stronger than vancomycin (MIC 3.9 µg/mL). No compounds showed inhibitory activity toward E. coli. Further bioassay indicated that compounds 1, 4, 5, 6, 8 and 9 showed in vitro α-glucosidase inhibitory activity, among which compound 9 displayed the best α-glucosidase inhibitory activity with IC50 value (0.026 mM) about 15-fold stronger than the reference compound acarbose (IC50 0.408 mM). These results suggested that compounds 4, 8 and 9 were potentially highly valuable compounds worthy of consideration to be further developed as an effective anti-MRSA agent or effective α-glucosidase inhibitors, respectively. In addition, the obtained data also supported that S. latifolia was rich in structurally diverse bioactive compounds worthy of further investigation, at least in searching for potential antibiotics and α-glucosidase inhibitors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenoles / Rubiaceae / Inhibidores de Glicósido Hidrolasas / Antibacterianos Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenoles / Rubiaceae / Inhibidores de Glicósido Hidrolasas / Antibacterianos Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China