Your browser doesn't support javascript.
loading
Multicenter Evaluation of Tissue Classification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.
Deininger, Sören-Oliver; Bollwein, Christine; Casadonte, Rita; Wandernoth, Petra; Gonçalves, Juliana Pereira Lopes; Kriegsmann, Katharina; Kriegsmann, Mark; Boskamp, Tobias; Kriegsmann, Jörg; Weichert, Wilko; Schirmacher, Peter; Ly, Alice; Schwamborn, Kristina.
Afiliación
  • Deininger SO; Bruker Daltonics GmbH & Co KG, Fahrenheitstrasse 4, 28359 Bremen, Germany.
  • Bollwein C; Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstrasse 18, 81675 München, Germany.
  • Casadonte R; Proteopath GmbH, Max-Planck-Strasse 17, 54296 Trier, Germany.
  • Wandernoth P; MVZ für Histologie, Zytologie und molekulare Diagnostik Trier GmbH, Max-Planck-Strasse 5, 54296 Trier, Germany.
  • Gonçalves JPL; Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstrasse 18, 81675 München, Germany.
  • Kriegsmann K; Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
  • Kriegsmann M; Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.
  • Boskamp T; Bruker Daltonics GmbH & Co KG, Fahrenheitstrasse 4, 28359 Bremen, Germany.
  • Kriegsmann J; Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.
  • Weichert W; MVZ für Histologie, Zytologie und molekulare Diagnostik Trier GmbH, Max-Planck-Strasse 5, 54296 Trier, Germany.
  • Schirmacher P; Danube Private University (DPU) Faculty of Medicine/Dentistry, Steiner Landstrasse 124, 3500 Krems-Stein, Austria.
  • Ly A; Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstrasse 18, 81675 München, Germany.
  • Schwamborn K; Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.
Anal Chem ; 94(23): 8194-8201, 2022 06 14.
Article en En | MEDLINE | ID: mdl-35658398
Many studies have demonstrated that tissue phenotyping (tissue typing) based on mass spectrometric imaging data is possible; however, comprehensive studies assessing variation and classifier transferability are largely lacking. This study evaluated the generalization of tissue classification based on Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometric imaging (MSI) across measurements performed at different sites. Sections of a tissue microarray (TMA) consisting of different formalin-fixed and paraffin-embedded (FFPE) human tissue samples from different tumor entities (leiomyoma, seminoma, mantle cell lymphoma, melanoma, breast cancer, and squamous cell carcinoma of the lung) were prepared and measured by MALDI-MSI at different sites using a standard protocol (SOP). Technical variation was deliberately introduced on two separate measurements via a different sample preparation protocol and a MALDI Time of Flight mass spectrometer that was not tuned to optimal performance. Using standard data preprocessing, a classification accuracy of 91.4% per pixel was achieved for intrasite classifications. When applying a leave-one-site-out cross-validation strategy, accuracy per pixel over sites was 78.6% for the SOP-compliant data sets and as low as 36.1% for the mistuned instrument data set. Data preprocessing designed to remove technical variation while retaining biological information substantially increased classification accuracy for all data sets with SOP-compliant data sets improved to 94.3%. In particular, classification accuracy of the mistuned instrument data set improved to 81.3% and from 67.0% to 87.8% per pixel for the non-SOP-compliant data set. We demonstrate that MALDI-MSI-based tissue classification is possible across sites when applying histological annotation and an optimized data preprocessing pipeline to improve generalization of classifications over technical variation and increasing overall robustness.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Células Escamosas Tipo de estudio: Clinical_trials / Diagnostic_studies Límite: Adult / Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Células Escamosas Tipo de estudio: Clinical_trials / Diagnostic_studies Límite: Adult / Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Alemania