Your browser doesn't support javascript.
loading
An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs.
Mashinchian, Omid; De Franceschi, Filippo; Nassiri, Sina; Michaud, Joris; Migliavacca, Eugenia; Aouad, Patrick; Metairon, Sylviane; Pruvost, Solenn; Karaz, Sonia; Fabre, Paul; Molina, Thomas; Stuelsatz, Pascal; Hegde, Nagabhooshan; Le Moal, Emmeran; Dammone, Gabriele; Dumont, Nicolas A; Lutolf, Matthias P; Feige, Jerome N; Bentzinger, C Florian.
Afiliación
  • Mashinchian O; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • De Franceschi F; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Nassiri S; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Michaud J; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
  • Migliavacca E; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Aouad P; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Metairon S; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Pruvost S; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Karaz S; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Fabre P; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Molina T; Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada.
  • Stuelsatz P; Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada.
  • Hegde N; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Le Moal E; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Dammone G; Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada.
  • Dumont NA; Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
  • Lutolf MP; Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada.
  • Feige JN; Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Bentzinger CF; Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
EMBO J ; 41(14): e110655, 2022 07 18.
Article en En | MEDLINE | ID: mdl-35703167
ABSTRACT
Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: EMBO J Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: EMBO J Año: 2022 Tipo del documento: Article País de afiliación: Suiza