Your browser doesn't support javascript.
loading
The in-silico feasibility of dose escalated, hypofractionated radiotherapy for rectal cancer.
Devlin, Lynsey; Grocutt, Laura; Hunter, Bianca; Chemu, Hiwot; Duffton, Aileen; McDonald, Alec; Macleod, Nicholas; McLoone, Philip; O'Cathail, Sean M.
Afiliación
  • Devlin L; Department of Radiotherapy, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
  • Grocutt L; CRUK RadNet Glasgow, University of Glasgow, Glasgow, United Kingdom.
  • Hunter B; CRUK RadNet Glasgow, University of Glasgow, Glasgow, United Kingdom.
  • Chemu H; Department of Radiotherapy Physics, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
  • Duffton A; Department of Radiotherapy Physics, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
  • McDonald A; Department of Clinical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
  • Macleod N; Department of Radiotherapy, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
  • McLoone P; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
  • O'Cathail SM; Department of Clinical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
Clin Transl Radiat Oncol ; 36: 24-30, 2022 Sep.
Article en En | MEDLINE | ID: mdl-35756193
ABSTRACT
Background and

purpose:

Short course radiotherapy (SCRT) has a low biological prescription dose. Rectal cancer has a dose response relationship and moderate α/ß ratio (∼5). We hypothesise hypofractionated dose escalation has radiobiological advantages. We assessed in-silico dose escalation to the primary tumour using a simultaneous integrated boost (SIB) technique. Materials and

methods:

Patients who had received 25 Gy/5# were enrolled. GTV was macroscopic tumour including lumen. CTVA was GTV + 10 mm. CTVB included elective nodes. PTV_Low was created from CTVF (CTVA + CTVB) + 7 mm. PTV_High (SIB) was GTV + 5 mm margin. OAR were as per RTOG guidelines. Each patient had 4 plans created at increasing dose levels (27.5 Gy, 30 Gy, 32.5 Gy and 35 Gy) to PTV_High. PTV_Low was 25 Gy/5#.5 test plans were created for each patient in Eclipse™ v15.5 and consisted of 2 VMAT full arcs (6 MV), Varian Truebeam (2.7). Planning objectives were set in the Photon optimiser (PO) and recalculated using Acuros v15.5. A priori feasibility was defined as 90% of plans achieving the planning objectives at 32.5 Gy dose level (EqD2 53.4 Gy).

Results:

20 SCRT patients median age 70, F (n = 5), M (n = 15). Rectum level; low (n = 12), mid (n = 3) and upper (n = 5). 100 plans were analysed. Mean volume of PTV_High was 130 cm3 (SD 81.5) and PTV_Low 769.6 cm3 (SD 241.1). 100% plans complied with mandatory planning dose metrics for each structure at the 25 Gy/5# plan and each dose level.

Conclusion:

Hypofractionated dose escalation to the primary tumour up to 35 Gy/5# is technically feasible in rectal cancer radiotherapy.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Clin Transl Radiat Oncol Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Clin Transl Radiat Oncol Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido