Your browser doesn't support javascript.
loading
A Multifunctional Fluorinated Polymer Enabling Efficient MAPbI3-Based Inverted Perovskite Solar Cells.
Luo, Ming; Zong, Xueping; Zhang, Wenhua; Hua, Mengnan; Sun, Zhe; Liang, Mao; Xue, Song.
Afiliación
  • Luo M; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Zong X; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Zhang W; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Hua M; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Sun Z; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Liang M; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
  • Xue S; Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
ACS Appl Mater Interfaces ; 14(27): 31285-31295, 2022 Jul 13.
Article en En | MEDLINE | ID: mdl-35771675
ABSTRACT
Exploring polymeric hole-transporting materials (HTMs) with passivation functions represents a simplified and effective approach to minimize the perovskite defect density. To date, most of reported polymeric HTMs were applied to fabricate n-i-p regular perovskite solar cells (PSCs). The polymers compatible for p-i-n inverted PSCs were very limited. Moreover, the passivation polymers were devoted to passivate the uncoordinated Pb2+. However, the MA+ cation defect has profound unwanted effect on device efficiency and long-term stability. In order to synchronously passivate the Pb2+ and MA+ defects in p-i-n inverted PSCs, a new nonfused polymer was intentionally explored via mild polymerization. The aromatic bridge instead of long alkyl chains enabled polymer BN-12 to achieve excellent thermal stability and good wettability of perovskite precursor. Furthermore, the incorporation of chemical anchor sites ("C═O" and "F") strongly controlled the crystallization of perovskite and restrained the MA+ ion migration. As a result, a significant fill factor (FF) of 82.9% and an enhanced power conversion efficiency (PCE) of 20.28% were achieved for MAPbI3-based devices with the dopant-free BN-12, exceeding those with the commercial HTM PTAA (FF = 81.7%, PCE = 19.51%). More importantly, the unencapsulated devices based on BN-12 realized outstanding long-term stability, maintaining approximately 95% of its initial efficiency after stored for 85 days. By contrast, the PTAA-based device showed rapid decrease which retained only 50% of its initial value after 45 days.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article