Your browser doesn't support javascript.
loading
Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases.
Herrmann, Johannes; Llima, Sergi Masot; Remm, Ants; Zapletal, Petr; McMahon, Nathan A; Scarato, Colin; Swiadek, François; Andersen, Christian Kraglund; Hellings, Christoph; Krinner, Sebastian; Lacroix, Nathan; Lazar, Stefania; Kerschbaum, Michael; Zanuz, Dante Colao; Norris, Graham J; Hartmann, Michael J; Wallraff, Andreas; Eichler, Christopher.
Afiliación
  • Herrmann J; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland. johannes.herrmann@phys.ethz.ch.
  • Llima SM; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Remm A; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Zapletal P; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • McMahon NA; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Scarato C; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Swiadek F; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Andersen CK; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Hellings C; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Krinner S; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Lacroix N; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Lazar S; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Kerschbaum M; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Zanuz DC; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Norris GJ; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Hartmann MJ; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Wallraff A; Department of Physics, ETH Zurich, CH-8093, Zurich, Switzerland.
  • Eichler C; Quantum Center, ETH Zurich, CH-8093, Zurich, Switzerland.
Nat Commun ; 13(1): 4144, 2022 Jul 16.
Article en En | MEDLINE | ID: mdl-35842418
ABSTRACT
Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza