Your browser doesn't support javascript.
loading
Chronic AMPK Activation Reduces the Expression and Alters Distribution of Synaptic Proteins in Neuronal SH-SY5Y Cells.
Yang, Alex J T; Mohammad, Ahmad; Tsiani, Evangelia; Necakov, Aleksandar; MacPherson, Rebecca E K.
Afiliación
  • Yang AJT; Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
  • Mohammad A; Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
  • Tsiani E; Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
  • Necakov A; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
  • MacPherson REK; Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.
Cells ; 11(15)2022 07 31.
Article en En | MEDLINE | ID: mdl-35954198
Neuronal growth and synaptic function are dependent on precise protein production and turnover at the synapse. AMPK-activated protein kinase (AMPK) represents a metabolic node involved in energy sensing and in regulating synaptic protein homeostasis. However, there is ambiguity surrounding the role of AMPK in regulating neuronal growth and health. This study examined the effect of chronic AMPK activation on markers of synaptic function and growth. Retinoic-acid-differentiated SH-SY5Y human neuroblastoma cells were treated with A-769662 (100 nM) or Compound C (30 nM) for 1, 3, or 5 days before AMPK, mTORC1, and markers for synapse function were examined. Cell morphology, neuronal marker content, and location were quantified after 5 days of treatment. AMPK phosphorylation was maintained throughout all 5 days of treatment with A-769662 and resulted in chronic mTORC1 inhibition. Lower total, soma, and neuritic neuronal marker contents were observed following 5 d of AMPK activation. Neurite protein abundance and distribution was lower following 5 days of A-769662 treatment. Our data suggest that chronic AMPK activation impacts synaptic protein content and reduces neurite protein abundance and distribution. These results highlight a distinct role that metabolism plays on markers of synapse health and function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Quinasas Activadas por AMP / Neuroblastoma Límite: Humans Idioma: En Revista: Cells Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Quinasas Activadas por AMP / Neuroblastoma Límite: Humans Idioma: En Revista: Cells Año: 2022 Tipo del documento: Article País de afiliación: Canadá