Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis.
Exp Mol Med
; 54(10): 1756-1765, 2022 10.
Article
en En
| MEDLINE
| ID: mdl-36229591
Clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes individuals to various inflammatory responses, has been reported to be associated with COVID-19 severity. However, the immunological signature and the exact gene expression program by which the presence of CHIP exerts its clinical impact on COVID-19 remain to be elucidated. In this study, we generated a single-cell transcriptome landscape of severe COVID-19 according to the presence of CHIP using peripheral blood mononuclear cells. Patients with CHIP exhibited a potent IFN-γ response in exacerbating inflammation, particularly in classical monocytes, compared to patients without CHIP. To dissect the regulatory mechanism of CHIP (+)-specific IFN-γ response gene expression in severe COVID-19, we identified DNMT3A CHIP mutation-dependent differentially methylated regions (DMRs) and annotated their putative target genes based on long-range chromatin interactions. We revealed that CHIP mutant-driven hypo-DMRs at poised cis-regulatory elements appear to facilitate the CHIP (+)-specific IFN-γ-mediated inflammatory immune response. Our results highlight that the presence of CHIP may increase the susceptibility to hyperinflammation through the reorganization of chromatin architecture, establishing a novel subgroup of severe COVID-19 patients.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Hematopoyesis Clonal
/
COVID-19
Límite:
Humans
Idioma:
En
Revista:
Exp Mol Med
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
Año:
2022
Tipo del documento:
Article