Your browser doesn't support javascript.
loading
SulfAtlas, the sulfatase database: state of the art and new developments.
Stam, Mark; Lelièvre, Pernelle; Hoebeke, Mark; Corre, Erwan; Barbeyron, Tristan; Michel, Gurvan.
Afiliación
  • Stam M; LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, 91057, Evry, Ile-de-France, France.
  • Lelièvre P; Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France.
  • Hoebeke M; Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, Bretagne, France.
  • Corre E; Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, Bretagne, France.
  • Barbeyron T; Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, Bretagne, France.
  • Michel G; Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France.
Nucleic Acids Res ; 51(D1): D647-D653, 2023 01 06.
Article en En | MEDLINE | ID: mdl-36318251
SulfAtlas (https://sulfatlas.sb-roscoff.fr/) is a knowledge-based resource dedicated to a sequence-based classification of sulfatases. Currently four sulfatase families exist (S1-S4) and the largest family (S1, formylglycine-dependent sulfatases) is divided into subfamilies by a phylogenetic approach, each subfamily corresponding to either a single characterized specificity (or few specificities in some cases) or to unknown substrates. Sequences are linked to their biochemical and structural information according to an expert scrutiny of the available literature. Database browsing was initially made possible both through a keyword search engine and a specific sequence similarity (BLAST) server. In this article, we will briefly summarize the experimental progresses in the sulfatase field in the last 6 years. To improve and speed up the (sub)family assignment of sulfatases in (meta)genomic data, we have developed a new, freely-accessible search engine using Hidden Markov model (HMM) for each (sub)family. This new tool (SulfAtlas HMM) is also a key part of the internal pipeline used to regularly update the database. SulfAtlas resource has indeed significantly grown since its creation in 2016, from 4550 sequences to 162 430 sequences in August 2022.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sulfatasas Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sulfatasas Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article País de afiliación: Francia