Your browser doesn't support javascript.
loading
Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy.
Lei, Benjamin; Bissonnette, Justine R; Hogan, Úna E; Bec, Avery E; Feng, Xinyi; Smith, Rodney D L.
Afiliación
  • Lei B; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
  • Bissonnette JR; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
  • Hogan ÚE; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
  • Bec AE; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
  • Feng X; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
  • Smith RDL; Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.
Anal Chem ; 94(49): 17011-17019, 2022 12 13.
Article en En | MEDLINE | ID: mdl-36445839
Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily created─a feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm-1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Canadá