Your browser doesn't support javascript.
loading
Human liver tissue transcriptomics revealed immunometabolic disturbances and related biomarkers in hepatitis B virus-related acute-on-chronic liver failure.
Yang, Luo; Zhen, Limin; Li, Zhihui; Zhu, Shu; Xu, Wenxiong; Luo, Qiumin; Peng, Liang; Xie, Chan.
Afiliación
  • Yang L; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Zhen L; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Li Z; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Zhu S; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Xu W; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Luo Q; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Peng L; Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Xie C; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China.
Front Microbiol ; 13: 1080484, 2022.
Article en En | MEDLINE | ID: mdl-36532504
ABSTRACT
Acute-on-chronic liver failure (ACLF) is a major cause of liver-related death worldwide, but its key pathological features remain incompletely defined. This study aimed to reveal the molecular basis of hepatitis B virus-related ACLF (HBV-ACLF) by transcriptome sequencing of human liver tissue. A total of 18 human liver tissues from patients with different stages of HBV-related disease were collected for RNA sequencing, and liver tissues from patients and mouse models with ACLF were used for subsequent validation. Specifically, 6,853 differentially expressed genes (DEGs) and 5,038 differentially expressed transcripts were identified in patients with ACLF compared to patients with chronic hepatitis B (CHB) and normal controls (NCs). Investigation of functional by KEGG pathway enrichment analysis revealed prominent immune and metabolic dysregulation at the ACLF stage. We found that the key genes FGF19, ADCY8 and KRT17, which are related to immunometabolic disturbances, were significantly upregulated in the progression of ACLF. The three key genes were validated in human and mouse samples, indicating their prognostic and therapeutic potential in ACLF. In summary, our work reveals that immunometabolic disorder is involved in HBV-ACLF pathogenesis and indicates that FGF19, ADCY8 and KRT17 may be sensitive biomarkers for HBV-related ACLF.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Microbiol Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Microbiol Año: 2022 Tipo del documento: Article País de afiliación: China