Your browser doesn't support javascript.
loading
PNP-type ligands enabled copper-catalyzed N-formylation of amines with CO2 in the presence of silanes.
Song, Zijie; Liu, Jun; Xing, Shuya; Shao, Xinxin; Li, Jiayun; Peng, Jiajian; Bai, Ying.
Afiliación
  • Song Z; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Liu J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Xing S; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Shao X; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Li J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Peng J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
  • Bai Y; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of C
Org Biomol Chem ; 21(4): 832-837, 2023 Jan 25.
Article en En | MEDLINE | ID: mdl-36602113
ABSTRACT
The sustainable catalytic transformation of carbon dioxide into valuable fine chemicals with high efficiency is a global challenge as although CO2 is an abundant, nontoxic, and sustainable carbon feedstock it is also the most important factor behind the Greenhouse Effect. We describe herein a PNP-type ligand-enabled copper-catalyzed N-formylation of amines utilizing CO2 as the building block in the presence of hydrosilane as the reductant. Our current protocol featured newly synthesized PNP-type ligands with broad substrate scope under mild reaction conditions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Org Biomol Chem Asunto de la revista: BIOQUIMICA / QUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Org Biomol Chem Asunto de la revista: BIOQUIMICA / QUIMICA Año: 2023 Tipo del documento: Article