Your browser doesn't support javascript.
loading
Endothelial Damage Arising From High Salt Hypertension Is Elucidated by Vascular Bed Systematic Profiling.
Vinaiphat, Arada; Pazhanchamy, Kalailingam; JebaMercy, Gnanasekaran; Ngan, SoFong Cam; Leow, Melvin Khee-Shing; Ho, Hee Hwa; Gao, Yong-Gui; Lim, Kah Leong; Richards, A Mark; de Kleijn, Dominique P V; Chen, Christopher P; Kalaria, Raj N; Liu, Jian; O'Leary, Deborah D; McCarthy, Neil E; Sze, Siu Kwan.
Afiliación
  • Vinaiphat A; School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore.
  • Pazhanchamy K; School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore.
  • JebaMercy G; School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore.
  • Ngan SC; School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore.
  • Leow MK; Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.).
  • Ho HH; Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore.
  • Gao YG; Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.).
  • Lim KL; Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.).
  • Richards AM; School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore.
  • de Kleijn DPV; Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore.
  • Chen CP; Department of Cardiology, National University Heart Centre, Singapore (A.M.R.).
  • Kalaria RN; Department of Cardiology, University of Otago, Christchurch, New Zealand (A.M.R.).
  • Liu J; Department of Vascular Surgery, UMC Utrecht, the Netherlands (D.P.V.d.K.).
  • O'Leary DD; Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.P.C.).
  • McCarthy NE; Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom (R.N.K.).
  • Sze SK; Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.).
Arterioscler Thromb Vasc Biol ; 43(3): 427-442, 2023 03.
Article en En | MEDLINE | ID: mdl-36700429
BACKGROUND: Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS: We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS: Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS: These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cloruro de Sodio Dietético / Hipertensión Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cloruro de Sodio Dietético / Hipertensión Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur