Your browser doesn't support javascript.
loading
Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network.
Menon, Vinod; Cerri, Domenic; Lee, Byeongwook; Yuan, Rui; Lee, Sung-Ho; Shih, Yen-Yu Ian.
Afiliación
  • Menon V; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA. menon@stanford.edu.
  • Cerri D; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA. menon@stanford.edu.
  • Lee B; Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. menon@stanford.edu.
  • Yuan R; Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
  • Lee SH; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
  • Shih YI; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Nat Commun ; 14(1): 866, 2023 02 16.
Article en En | MEDLINE | ID: mdl-36797303
ABSTRACT
The salience network (SN) and default mode network (DMN) play a crucial role in cognitive function. The SN, anchored in the anterior insular cortex (AI), has been hypothesized to modulate DMN activity during stimulus-driven cognition. However, the causal neural mechanisms underlying changes in DMN activity and its functional connectivity with the SN are poorly understood. Here we combine feedforward optogenetic stimulation with fMRI and computational modeling to dissect the causal role of AI neurons in dynamic functional interactions between SN and DMN nodes in the male rat brain. Optogenetic stimulation of Chronos-expressing AI neurons suppressed DMN activity, and decreased AI-DMN and intra-DMN functional connectivity. Our findings demonstrate that feedforward optogenetic stimulation of AI neurons induces dynamic suppression and decoupling of the DMN and elucidates previously unknown features of rodent brain network organization. Our study advances foundational knowledge of causal mechanisms underlying dynamic cross-network interactions and brain network switching.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Red en Modo Predeterminado / Corteza Insular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Red en Modo Predeterminado / Corteza Insular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos