Your browser doesn't support javascript.
loading
Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology.
Gorman, Chris; Punzo, Davide; Octaviano, Igor; Pieper, Steven; Longabaugh, William J R; Clunie, David A; Kikinis, Ron; Fedorov, Andrey Y; Herrmann, Markus D.
Afiliación
  • Gorman C; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
  • Punzo D; Radical Imaging, Boston, MA, USA.
  • Octaviano I; Radical Imaging, Boston, MA, USA.
  • Pieper S; Isomics Inc, Cambridge, MA, USA.
  • Longabaugh WJR; Institute for Systems Biology, Seattle, WA, USA.
  • Clunie DA; PixelMed Publishing LLC, Bangor, PA, USA.
  • Kikinis R; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
  • Fedorov AY; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. afedorov@bwh.harvard.edu.
  • Herrmann MD; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. mdherrmann@mgh.harvard.edu.
Nat Commun ; 14(1): 1572, 2023 03 22.
Article en En | MEDLINE | ID: mdl-36949078
The exchange of large and complex slide microscopy imaging data in biomedical research and pathology practice is impeded by a lack of data standardization and interoperability, which is detrimental to the reproducibility of scientific findings and clinical integration of technological innovations. We introduce Slim, an open-source, web-based slide microscopy viewer that implements the internationally accepted Digital Imaging and Communications in Medicine (DICOM) standard to achieve interoperability with a multitude of existing medical imaging systems. We showcase the capabilities of Slim as the slide microscopy viewer of the NCI Imaging Data Commons and demonstrate how the viewer enables interactive visualization of traditional brightfield microscopy and highly-multiplexed immunofluorescence microscopy images from The Cancer Genome Atlas and Human Tissue Atlas Network, respectively, using standard DICOMweb services. We further show how Slim enables the collection of standardized image annotations for the development or validation of machine learning models and the visual interpretation of model inference results in the form of segmentation masks, spatial heat maps, or image-derived measurements.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ciencia de los Datos / Microscopía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ciencia de los Datos / Microscopía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos