Growing human-scale scala tympani-likein vitrocell constructs.
Biofabrication
; 15(3)2023 05 09.
Article
en En
| MEDLINE
| ID: mdl-37094574
Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development ofin vitromodels that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Implantes Cocleares
/
Implantación Coclear
Límite:
Humans
Idioma:
En
Revista:
Biofabrication
Asunto de la revista:
BIOTECNOLOGIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Australia