A web-based integrative transcriptome analysis, RNAseqChef, uncovers the cell/tissue type-dependent action of sulforaphane.
J Biol Chem
; 299(6): 104810, 2023 06.
Article
en En
| MEDLINE
| ID: mdl-37172729
RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Sulfóxidos
/
Programas Informáticos
/
Isotiocianatos
/
Internet
/
Perfilación de la Expresión Génica
/
RNA-Seq
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
J Biol Chem
Año:
2023
Tipo del documento:
Article
País de afiliación:
Japón