Your browser doesn't support javascript.
loading
Leveraging family data to design Mendelian randomization that is provably robust to population stratification.
LaPierre, Nathan; Fu, Boyang; Turnbull, Steven; Eskin, Eleazar; Sankararaman, Sriram.
Afiliación
  • LaPierre N; Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA; nathanl2012@gmail.com sriram@cs.ucla.edu.
  • Fu B; Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA.
  • Turnbull S; Department of Statistics, University of California Los Angeles, Los Angeles, California 90095, USA.
  • Eskin E; Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA.
  • Sankararaman S; Department of Computational Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.
Genome Res ; 33(7): 1032-1041, 2023 07.
Article en En | MEDLINE | ID: mdl-37197991
Mendelian randomization (MR) has emerged as a powerful approach to leverage genetic instruments to infer causality between pairs of traits in observational studies. However, the results of such studies are susceptible to biases owing to weak instruments, as well as the confounding effects of population stratification and horizontal pleiotropy. Here, we show that family data can be leveraged to design MR tests that are provably robust to confounding from population stratification, assortative mating, and dynastic effects. We show in simulations that our approach, MR-Twin, is robust to confounding from population stratification and is not affected by weak instrument bias, whereas standard MR methods yield inflated false positive rates. We then conduct an exploratory analysis of MR-Twin and other MR methods applied to 121 trait pairs in the UK Biobank data set. Our results suggest that confounding from population stratification can lead to false positives for existing MR methods, whereas MR-Twin is immune to this type of confounding, and that MR-Twin can help assess whether traditional approaches may be inflated owing to confounding from population stratification.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Reproducción / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Reproducción / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article