ZmXYL modulates auxin-induced maize growth.
Plant J
; 115(6): 1699-1715, 2023 09.
Article
en En
| MEDLINE
| ID: mdl-37300848
Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a ß-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Xilosidasas
/
Zea mays
Idioma:
En
Revista:
Plant J
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BOTANICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China