Your browser doesn't support javascript.
loading
Atomic insights of an up and down conformation of the Acinetobacter baumannii F1 -ATPase subunit ε and deciphering the residues critical for ATP hydrolysis inhibition and ATP synthesis.
Saw, Wuan-Geok; Le, Khoa Cong Minh; Shin, Joon; Kwek, Jes Hui Min; Wong, Chui Fann; Ragunathan, Priya; Fong, Tuck Choy; Müller, Volker; Grüber, Gerhard.
Afiliación
  • Saw WG; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Le KCM; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
  • Shin J; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Kwek JHM; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Wong CF; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Ragunathan P; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Fong TC; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Müller V; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Grüber G; Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany.
FASEB J ; 37(7): e23040, 2023 07.
Article en En | MEDLINE | ID: mdl-37318822
ABSTRACT
The Acinetobacter baumannii F1 FO -ATP synthase (α3ß3γδεab2c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3ß3γε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑßγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits ß and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal ß-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ATPasas de Translocación de Protón / Acinetobacter baumannii Límite: Humans Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ATPasas de Translocación de Protón / Acinetobacter baumannii Límite: Humans Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur