Your browser doesn't support javascript.
loading
Ketone bodies supplementation restores the barrier function, induces a metabolic switch, and elicits beta-hydroxybutyrate diffusion across a monolayer of iPSC-derived brain microvascular endothelial cells.
Pervaiz, Iqra; Mehta, Yash; Sherill, Kinzie; Patel, Dhavalkumar; Al-Ahmad, Abraham J.
Afiliación
  • Pervaiz I; Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, Uni
  • Mehta Y; Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, Uni
  • Sherill K; Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, Uni
  • Patel D; Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, Uni
  • Al-Ahmad AJ; Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, Uni
Microvasc Res ; 150: 104585, 2023 11.
Article en En | MEDLINE | ID: mdl-37437687
ABSTRACT
Glucose constitutes the main source of energy for the central nervous system (CNS), its entry occurring at the blood-brain barrier (BBB) via the presence of glucose transporter 1 (GLUT1). However, under food intake restrictions, the CNS can utilize ketone bodies (KB) as an alternative source of energy. Notably, the relationship between the BBB and KBs and its effect on their glucose metabolism remains poorly understood. In this study, we investigated the effect of glucose deprivation on the brain endothelium in vitro, and supplementation with KBs using induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial cell-like cells (iBMECs). Glucose-free environment significantly decreased cell metabolic activity and negatively impacted the barrier function. In addition, glucose deprivation did not increase GLUT1 expression but also resulted in a decrease in glucose uptake and glycolysis. Supplementation of glucose-deprived iBMECs monolayers with KB showed no improvement and even worsened upon treatment with acetoacetate. However, under a hypoglycemic condition in the presence of KBs, we noted a slight improvement of the barrier function, with no changes in glucose uptake. Notably, hypoglycemia and/or KB pre-treatment elicited a saturable beta-hydroxybutyrate diffusion across iBMECs monolayers, such diffusion occurred partially via an MCT1-dependent mechanism. Taken together, our study highlights the importance of glucose metabolism and the reliance of the brain endothelium on glucose and glycolysis for its function, such dependence is unlikely to be covered by KBs supplementation. In addition, KB diffusion at the BBB appeared induced by KB pre-treatment and appears to involve an MCT1-dependent mechanism.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas / Cuerpos Cetónicos Idioma: En Revista: Microvasc Res Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas / Cuerpos Cetónicos Idioma: En Revista: Microvasc Res Año: 2023 Tipo del documento: Article