Your browser doesn't support javascript.
loading
Microdroplet Chemistry Accelerating a Three-Component Passerini Reaction for α-Acyloxy Carboxamide Synthesis.
Wu, Yikang; Cheng, Heyong; Li, Jiayao; Liu, Jinhua; Sun, Jiannan.
Afiliación
  • Wu Y; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
  • Cheng H; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
  • Li J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
  • Liu J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
  • Sun J; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China.
J Org Chem ; 88(15): 11186-11196, 2023 Aug 04.
Article en En | MEDLINE | ID: mdl-37493511
α-Acyloxy carboxamides are important multifunctional natural products that show bioactive and pharmacological activities. Traditional three-component Passerini reactions among isocyanates, aldehydes/ketones, and carboxylic acids for affording α-acyloxy carboxamides suffer from several drawbacks such as long reaction time, high reaction temperature, special reaction devices, etc. Herein, we developed a high-efficiency microdroplet method for accelerating the Passerini reactions by 3 orders of magnitude by comparing with the rate constants in bulk, achieving high-yield and gram-scale (scaling up to 1.91 g for 1 h collection) synthesis of α-acyloxy carboxamides at near room temperature. The Passerini microdroplet method shows a wide scope for a variety of benzoic acids, aryl aldehydes, and isocyanates. Moreover, the Passerini reaction was poorly conducted in aqueous microdroplets but well accelerated in acetonitrile microdroplets with at least 230 times efficiency than on-water Passerini reactions. All results proved it an attractive alternative to classic organic synthesis for the construction of α-acyloxy carboxamides and derivatives.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Org Chem Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Org Chem Año: 2023 Tipo del documento: Article País de afiliación: China