Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma.
Cell Mol Life Sci
; 80(8): 233, 2023 Jul 28.
Article
en En
| MEDLINE
| ID: mdl-37505240
Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias Encefálicas
/
Glioblastoma
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Cell Mol Life Sci
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2023
Tipo del documento:
Article
País de afiliación:
Italia