Your browser doesn't support javascript.
loading
Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability.
Zhang, Mingchao; Pal, Aniket; Zheng, Zhiqiang; Gardi, Gaurav; Yildiz, Erdost; Sitti, Metin.
Afiliación
  • Zhang M; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
  • Pal A; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
  • Zheng Z; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
  • Gardi G; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
  • Yildiz E; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
  • Sitti M; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany. sitti@is.mpg.de.
Nat Mater ; 22(10): 1243-1252, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37604911
Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania