Your browser doesn't support javascript.
loading
Automated machine learning for genome wide association studies.
Lakiotaki, Kleanthi; Papadovasilakis, Zaharias; Lagani, Vincenzo; Fafalios, Stefanos; Charonyktakis, Paulos; Tsagris, Michail; Tsamardinos, Ioannis.
Afiliación
  • Lakiotaki K; Department of Computer Science, University of Crete, Heraklion, Greece.
  • Papadovasilakis Z; Department of Computer Science, University of Crete, Heraklion, Greece.
  • Lagani V; JADBio Gnosis DA S.A., Science and Technology Park of Crete, GR-70013 Heraklion, Greece.
  • Fafalios S; Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, Heraklion, Greece.
  • Charonyktakis P; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23952, Saudi Arabia.
  • Tsagris M; SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal 23952, Saudi Arabia.
  • Tsamardinos I; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
Bioinformatics ; 39(9)2023 09 02.
Article en En | MEDLINE | ID: mdl-37672022
MOTIVATION: Genome-wide association studies (GWAS) present several computational and statistical challenges for their data analysis, including knowledge discovery, interpretability, and translation to clinical practice. RESULTS: We develop, apply, and comparatively evaluate an automated machine learning (AutoML) approach, customized for genomic data that delivers reliable predictive and diagnostic models, the set of genetic variants that are important for predictions (called a biosignature), and an estimate of the out-of-sample predictive power. This AutoML approach discovers variants with higher predictive performance compared to standard GWAS methods, computes an individual risk prediction score, generalizes to new, unseen data, is shown to better differentiate causal variants from other highly correlated variants, and enhances knowledge discovery and interpretability by reporting multiple equivalent biosignatures. AVAILABILITY AND IMPLEMENTATION: Code for this study is available at: https://github.com/mensxmachina/autoML-GWAS. JADBio offers a free version at: https://jadbio.com/sign-up/. SNP data can be downloaded from the EGA repository (https://ega-archive.org/). PRS data are found at: https://www.aicrowd.com/challenges/opensnp-height-prediction. Simulation data to study population structure can be found at: https://easygwas.ethz.ch/data/public/dataset/view/1/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Grecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Grecia