A novel pectin methylesterase inhibitor, PMEI3, in common bean suggests a key role of pectin methylesterification in Pseudomonas resistance.
J Exp Bot
; 75(1): 364-390, 2024 Jan 01.
Article
en En
| MEDLINE
| ID: mdl-37712879
The mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant. This trend was also observed in the modulation of 101 cell wall-related genes. Cell wall composition changes at early stages of Pph infection were associated with homogalacturonan methylation and the formation of egg boxes. Among the cell wall genes modulated, a pectin methylesterase inhibitor 3 (PvPMEI3) gene, closely related to AtPMEI3, was detected. PvPMEI3 protein was located in the apoplast and its pectin methylesterase inhibitory activity was demonstrated. PvPMEI3 seems to be a good candidate to play a key role in Pph infection, which was supported by analysis of an Arabidopsis pmei3 mutant, which showed susceptibility to Pph, in contrast to resistant Arabidopsis Col-0 plants. These results indicate a key role of the degree of pectin methylesterification in host resistance to Pph during the first steps of the attack.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Arabidopsis
/
Phaseolus
Idioma:
En
Revista:
J Exp Bot
Asunto de la revista:
BOTANICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
España