Your browser doesn't support javascript.
loading
SAM: Self-adapting mixture prior to dynamically borrow information from historical data in clinical trials.
Yang, Peng; Zhao, Yuansong; Nie, Lei; Vallejo, Jonathon; Yuan, Ying.
Afiliación
  • Yang P; Department of Statistics, Rice University, Houston, Texas, USA.
  • Zhao Y; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Nie L; Department of Biostatistics, The University of Texas Health Science Center, Houston, Texas, USA.
  • Vallejo J; Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
  • Yuan Y; Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
Biometrics ; 79(4): 2857-2868, 2023 12.
Article en En | MEDLINE | ID: mdl-37721513
Mixture priors provide an intuitive way to incorporate historical data while accounting for potential prior-data conflict by combining an informative prior with a noninformative prior. However, prespecifying the mixing weight for each component remains a crucial challenge. Ideally, the mixing weight should reflect the degree of prior-data conflict, which is often unknown beforehand, posing a significant obstacle to the application and acceptance of mixture priors. To address this challenge, we introduce self-adapting mixture (SAM) priors that determine the mixing weight using likelihood ratio test statistics or Bayes factors. SAM priors are data-driven and self-adapting, favoring the informative (noninformative) prior component when there is little (substantial) evidence of prior-data conflict. Consequently, SAM priors achieve dynamic information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite and large samples and achieve information-borrowing consistency. Moreover, SAM priors are easy to compute, data-driven, and calibration-free, mitigating the risk of data dredging. Numerical studies show that SAM priors outperform existing methods in adopting prior-data conflicts effectively. We developed R package "SAMprior" and web application that are freely available at CRAN and www.trialdesign.org to facilitate the use of SAM priors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación / Modelos Estadísticos Idioma: En Revista: Biometrics Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación / Modelos Estadísticos Idioma: En Revista: Biometrics Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos