Your browser doesn't support javascript.
loading
Persistent Hypoxia with Intermittent Aggravation Causes Imbalance in Smad3/Myocardin-Related Transcription Factor Signaling with Consequent Endothelial Senescence and Pulmonary Arterial Remodeling.
Hu, Jiaxin; Singh, Prachi; Li, Jingrui; Zhang, Jing; Li, Fei; Zhang, Hehe; Xie, Jiang.
Afiliación
  • Hu J; Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
  • Singh P; Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
  • Li J; First Hospital of Lanzhou University, Lanzhou 730009, China.
  • Zhang J; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
  • Li F; Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
  • Zhang H; Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
  • Xie J; Beijing Anzhen Hospital Centre for Sleep Medicine and Science, Capital Medical University, Beijing 100029, China.
Biomedicines ; 11(9)2023 Aug 23.
Article en En | MEDLINE | ID: mdl-37760802
ABSTRACT
Loss of Smad3 and the consequent activation of myocardin-related transcription factor (MRTF) are associated with vascular pathologies. This study aimed to examine the impact of persistent hypoxia with intermittent aggravation (PI hypoxia) on cellular senescence and pulmonary arterial remodeling mediated by the Smad3/MRTF imbalance. We examined the effects of PI hypoxia on the Smad3/MRTF pathway and cellular senescence using human pulmonary artery endothelial cells (HPAECs) and in vivo studies in rats. The senescent degree was evaluated using ß-galactosidase staining, p16 quantitation and the measurement of senescence-associated secretory phenotype. Structural data in the pathological analysis of pulmonary artery remodeling were collected. Compared to the control, HPAECs and pulmonary tissue from rats exposed to PI hypoxia showed a significantly higher senescent degree, lower expression of Smad3, and higher MRTF levels. The overexpression of Smad3 significantly mitigated HPAECs senescence in vitro. Further, treatment with CCG-203971, which inhibits MRTF, increased Smad3 levels and reduced ß-galactosidase positive cells in rat lung tissue. This intervention also alleviated PI hypoxia-induced pathological changes, including remodeling indices of pulmonary arterial thickening, muscularization, and collagen formation. In conclusion, imbalanced Smad3/MRTF signaling is linked to PI hypoxia-induced senescence and pulmonary arterial remodeling, making it a potential therapeutic target for patients with sleep apnea and chronic obstructive pulmonary disease.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies Idioma: En Revista: Biomedicines Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies Idioma: En Revista: Biomedicines Año: 2023 Tipo del documento: Article País de afiliación: China