Your browser doesn't support javascript.
loading
Direct Assembly of Metal-Phenolic Network Nanoparticles for Biomedical Applications.
Xu, Wanjun; Lin, Zhixing; Pan, Shuaijun; Chen, Jingqu; Wang, Tianzheng; Cortez-Jugo, Christina; Caruso, Frank.
Afiliación
  • Xu W; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Lin Z; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Pan S; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Chen J; State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
  • Wang T; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Cortez-Jugo C; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Caruso F; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
Angew Chem Int Ed Engl ; 62(45): e202312925, 2023 11 06.
Article en En | MEDLINE | ID: mdl-37800651
ABSTRACT
Coordination assembly offers a versatile means to developing advanced materials for various applications. However, current strategies for assembling metal-organic networks into nanoparticles (NPs) often face challenges such as the use of toxic organic solvents, cytotoxicity because of synthetic organic ligands, and complex synthesis procedures. Herein, we directly assemble metal-organic networks into NPs using metal ions and polyphenols (i.e., metal-phenolic networks (MPNs)) in aqueous solutions without templating or seeding agents. We demonstrate the role of buffers (e.g., phosphate buffer) in governing NP formation and the engineering of the NP physicochemical properties (e.g., tunable sizes from 50 to 270 nm) by altering the assembly conditions. A library of MPN NPs is prepared using natural polyphenols and various metal ions. Diverse functional cargos, including anticancer drugs and proteins with different molecular weights and isoelectric points, are readily loaded within the NPs for various applications (e.g., biocatalysis, therapeutic delivery) by direct mixing, without surface modification, owing to the strong affinity of polyphenols to various guest molecules. This study provides insights into the assembly mechanism of metal-organic complexes into NPs and offers a simple strategy to engineer nanosized materials with desired properties for diverse biotechnological applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Australia