Your browser doesn't support javascript.
loading
CODD-Pred: A Web Server for Efficient Target Identification and Bioactivity Prediction of Small Molecules.
Yin, Xiaodan; Wang, Xiaorui; Li, Yuquan; Wang, Jike; Wang, Yuwei; Deng, Yafeng; Hou, Tingjun; Liu, Huanxiang; Luo, Pei; Yao, Xiaojun.
Afiliación
  • Yin X; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
  • Wang X; Carbon-Silicon AI Technology Co., Ltd, Zhejiang, Hangzhou 310018, China.
  • Li Y; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
  • Wang J; Carbon-Silicon AI Technology Co., Ltd, Zhejiang, Hangzhou 310018, China.
  • Wang Y; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
  • Deng Y; College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058, China.
  • Hou T; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
  • Liu H; Carbon-Silicon AI Technology Co., Ltd, Zhejiang, Hangzhou 310018, China.
  • Luo P; College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058, China.
  • Yao X; Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.
J Chem Inf Model ; 63(20): 6169-6176, 2023 10 23.
Article en En | MEDLINE | ID: mdl-37820365
Target identification and bioactivity prediction are critical steps in the drug discovery process. Here we introduce CODD-Pred (COmprehensive Drug Design Predictor), an online web server with well-curated data sets from the GOSTAR database, which is designed with a dual purpose of predicting potential protein drug targets and computing bioactivity values of small molecules. We first designed a double molecular graph perception (DMGP) framework for target prediction based on a large library of 646 498 small molecules interacting with 640 human targets. The framework achieved a top-5 accuracy of over 80% for hitting at least one target on both external validation sets. Additionally, its performance on the external validation set comprising 200 molecules surpassed that of four existing target prediction servers. Second, we collected 56 targets closely related to the occurrence and development of cancer, metabolic diseases, and inflammatory immune diseases and developed a multi-model self-validation activity prediction (MSAP) framework that enables accurate bioactivity quantification predictions for small-molecule ligands of these 56 targets. CODD-Pred is a handy tool for rapid evaluation and optimization of small molecules with specific target activity. CODD-Pred is freely accessible at http://codd.iddd.group/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Computadores / Proteínas Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Computadores / Proteínas Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China