Your browser doesn't support javascript.
loading
Insight into the Pseudocapacitive Behavior of Electroactive Biofilms in Response to Dynamic-Controlled Electron Transfer and Metabolism Kinetics for Current Generation in Water Treatment.
Li, Chao; Hu, Shaogang; Ji, Chengcheng; Yi, Kexin; Yang, Wulin.
Afiliación
  • Li C; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China.
  • Hu S; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China.
  • Ji C; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China.
  • Yi K; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China.
  • Yang W; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China.
Environ Sci Technol ; 57(48): 19891-19901, 2023 Dec 05.
Article en En | MEDLINE | ID: mdl-38000046
ABSTRACT
Electroactive biofilms (EBs) engage in complex electron transfer and storage processes involving intracellular and extracellular mediators with temporary electron storage capabilities. Consequently, electroactive biofilms exhibit pseudocapacitive behaviors during substrate degradation processes. However, comprehensive systematic research in this area has been lacking. This study demonstrated that the pseudocapacitive property was an intrinsic characteristic of EBs. This property represents dynamic-controlled electron transfer and is critical in current generation, unlike noncapacitive responses. Nontransient charge and discharge experiments revealed a correlation between capacitive charge accumulation and current generation in EBs. Additionally, analysis of substrate degradation suggested that the maximum power density (Pmax) changed with the kinetic constants of COD degradation, with pseudocapacitances of EBs directly proportional to Pmax. The interaction networks of key latent variables were evaluated through partial least-squares path modeling analysis. The results indicated that cytochrome c was closely associated with the formation of pseudocapacitance in EBs. In conclusion, pseudocapacitance can be considered a valuable indicator for assessing the complex electron transfer behavior of EBs. Pseudocapacitive biofilms have the potential to efficiently regulate biological reactions and serve as a promising carbon-neutral and renewable strategy for energy generation and storage. An in-depth understanding of the intrinsic property of pseudocapacitive behavior in EBs can undoubtedly advance the development of this concept in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Purificación del Agua / Electrones Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Purificación del Agua / Electrones Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article