Your browser doesn't support javascript.
loading
Deep learning algorithms applied to computational chemistry.
Guzman-Pando, Abimael; Ramirez-Alonso, Graciela; Arzate-Quintana, Carlos; Camarillo-Cisneros, Javier.
Afiliación
  • Guzman-Pando A; Computational Chemistry Physics Laboratory, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico.
  • Ramirez-Alonso G; Faculty of Engineering, Universidad Autónoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico.
  • Arzate-Quintana C; Computational Chemistry Physics Laboratory, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico.
  • Camarillo-Cisneros J; Computational Chemistry Physics Laboratory, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico. javier.camarillo@uach.mx.
Mol Divers ; 28(4): 2375-2410, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38151697
ABSTRACT
Recently, there has been a significant increase in the use of deep learning techniques in the molecular sciences, which have shown high performance on datasets and the ability to generalize across data. However, no model has achieved perfect performance in solving all problems, and the pros and cons of each approach remain unclear to those new to the field. Therefore, this paper aims to review deep learning algorithms that have been applied to solve molecular challenges in computational chemistry. We proposed a comprehensive categorization that encompasses two primary approaches; conventional deep learning and geometric deep learning models. This classification takes into account the distinct techniques employed by the algorithms within each approach. We present an up-to-date analysis of these algorithms, emphasizing their key features and open issues. This includes details of input descriptors, datasets used, open-source code availability, task solutions, and actual research applications, focusing on general applications rather than specific ones such as drug discovery. Furthermore, our report discusses trends and future directions in molecular algorithm design, including the input descriptors used for each deep learning model, GPU usage, training and forward processing time, model parameters, the most commonly used datasets, libraries, and optimization schemes. This information aids in identifying the most suitable algorithms for a given task. It also serves as a reference for the datasets and input data frequently used for each algorithm technique. In addition, it provides insights into the benefits and open issues of each technique, and supports the development of novel computational chemistry systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Aprendizaje Profundo / Química Computacional Idioma: En Revista: Mol Divers Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: México

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Aprendizaje Profundo / Química Computacional Idioma: En Revista: Mol Divers Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: México