Interfacial Triboelectricity Lights Up Phosphor-Polymer Elastic Composites: Unraveling the Mechanism of Mechanoluminescence in Zinc Sulfide Microparticle-Embedded Polydimethylsiloxane Films.
Small
; 20(17): e2307089, 2024 Apr.
Article
en En
| MEDLINE
| ID: mdl-38185784
ABSTRACT
Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnSCu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnSCu phosphor induced by the triboelectricity generated at the ZnSCu microparticle-PDMS matrix interface. ZnSCu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnSCu microparticles. The ML of ZnSCu-PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor-polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnSCu-PDMS systems) with bright and durable ML.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article