Your browser doesn't support javascript.
loading
Characterization of ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from feedstocks and coproducts from Canola bio-oil processing: Impact by source origin.
de Oliveira, Alessandra M R C B; He, J; Yu, Peiqiang.
Afiliación
  • de Oliveira AMRCB; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • He J; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Yu P; Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 664-679, 2024 May.
Article en En | MEDLINE | ID: mdl-38223994
ABSTRACT
The objective of this study was to characterize ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from canola feedstock (canola seeds) and coproducts (meal and pellets) from bio-oil processing which were impacted by source origin. The feedstocks and coproducts (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH). In situ rumen degradation kinetics were determined using four fistulated Holstein cows with incubation times at 0, 2, 4, 8, 12, 24 and 48 h. Intestinal digestions were determined using the three-step in vitro method with preincubation at 12 h. The DVE/OEB and National Research Council systems were applied to evaluate the truly absorbable nutrient supply to dairy cows and feed milk values (FMVs). The results showed that in situ undegradable fractions (U) (p = 0.025) were higher in CA meals, and potentially degradable fraction of D was higher (p = 0.016) in CH meals. CH meals had higher total digestible dry matter (TDDM, p = 0.018) and intestinal digestibility of protein (dIDP, p = 0.016). Canola meals from CA had lower MREE (microbial protein synthesized in the rumen based on available rumen degradable protein; p = 0.011) and DVME (rumen synthesized microbial protein digested in the small intestine; p = 0.011) and had higher ECP (endogenous protein in the small intestine, p = 0.001) and absorbed endogenous crude protein (truly absorbed ECP in the small intestine) than CH (p = 0.001). The FMV evaluated based on the metabolic protein and net energy showed no differences between CA and CH in both coproducts and feedstocks.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rumen / Dieta / Digestión / Alimentación Animal / Fenómenos Fisiológicos Nutricionales de los Animales Límite: Animals Idioma: En Revista: J Anim Physiol Anim Nutr (Berl) Asunto de la revista: CIENCIAS DA NUTRICAO / FISIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rumen / Dieta / Digestión / Alimentación Animal / Fenómenos Fisiológicos Nutricionales de los Animales Límite: Animals Idioma: En Revista: J Anim Physiol Anim Nutr (Berl) Asunto de la revista: CIENCIAS DA NUTRICAO / FISIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: Canadá