Your browser doesn't support javascript.
loading
3D Pathways Enabling Highly-Efficient Lithium Reservoir for Fast-Charging Batteries.
Han, Sang A; Suh, Joo Hyeong; Kim, Junyoung; Park, Sungmin; Jeong, Won Ung; Shimada, Yusuke; Kim, Jung Ho; Park, Min-Sik; Dou, Shi Xue.
Afiliación
  • Han SA; Institute for Superconducting & Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
  • Suh JH; Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
  • Kim J; Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
  • Park S; Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
  • Jeong WU; Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
  • Shimada Y; Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
  • Kim JH; Institute for Superconducting & Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
  • Park MS; Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
  • Dou SX; Institute for Superconducting & Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
Small ; 20(26): e2310201, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38243889
ABSTRACT
Enhancing the mobility of lithium-ions (Li+) through surface engineering is one of major challenges facing fast-charging lithium-ion batteries (LIBs). In case of demanding charging conditions, the use of a conventional artificial graphite (AG) anode leads to an increase in operating temperature and the formation of lithium dendrites on the anode surface. In this study, a biphasic zeolitic imidazolate framework (ZIF)-AG anode, designed strategically and coated with a mesoporous material, is verified to improve the pathways of Li+ and electrons under a high charging current density. In particular, the graphite surface is treated with a coating of a ZIF-8-derived carbon nanoparticles, which addresses sufficient surface porosity, enabling this material to serve as an electrolyte reservoir and facilitate Li+ intercalation. Moreover, the augmentation in specific surface area proves advantageous in reducing the overpotential for interfacial charge transfer reactions. In practical terms, employing a full-cell with the biphasic ZIF-AG anode results in a shorter charging time and improved cycling performance, demonstrating no evidence of Li plating during 300 cycles under 3.0 C-charging and 1.0 C-discharging. The research endeavors to contribute to the progress of anode materials by enhancing their charging capability, aligning with the increasing requirements of the electric vehicle applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Australia