Your browser doesn't support javascript.
loading
A High-Energy Tellurium Redox-Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries.
Du, Jingwei; Zhao, Yirong; Chu, Xingyuan; Wang, Gang; Neumann, Christof; Xu, Hao; Li, Xiaodong; Löffler, Markus; Lu, Qiongqiong; Zhang, Jiaxu; Li, Dongqi; Zou, Jianxin; Mikhailova, Daria; Turchanin, Andrey; Feng, Xinliang; Yu, Minghao.
Afiliación
  • Du J; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Zhao Y; Institute for Materials Chemistry, Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany.
  • Chu X; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Wang G; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Neumann C; Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
  • Xu H; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Lessigstraße 10, 07743, Jena, Germany.
  • Li X; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Löffler M; Center of Hydrogen Science, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Lu Q; Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
  • Zhang J; Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany.
  • Li D; Institute of Materials, Henan Academy of Sciences, Zhengzhou, 450046, China.
  • Zou J; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Mikhailova D; Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
  • Turchanin A; Center of Hydrogen Science, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Feng X; Institute for Materials Chemistry, Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany.
  • Yu M; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Lessigstraße 10, 07743, Jena, Germany.
Adv Mater ; 36(19): e2313621, 2024 May.
Article en En | MEDLINE | ID: mdl-38316395
ABSTRACT
Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe -1 and a high energy density of 1028.0 Wh kgTe -1. A highly concentrated electrolyte (30 mol kg-1 ZnCl2) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H2O reactivity and inhibits undesirable hydrolysis of the Te4+ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te2-/Te0/Te4+ conversion with TeCl4 is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania