Your browser doesn't support javascript.
loading
Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores.
Nguyen, Minh N; Jue, Melinda L; Buchsbaum, Steven F; Park, Sei Jin; Vollnhals, Florian; Christiansen, Silke; Fornasiero, Francesco; Schäfer, Andrea I.
Afiliación
  • Nguyen MN; Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
  • Jue ML; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, US.
  • Buchsbaum SF; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, US.
  • Park SJ; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, US.
  • Vollnhals F; Institute for Nanotechnology and Correlative Microscopy (INAM), Forchheim, Germany.
  • Christiansen S; Institute for Nanotechnology and Correlative Microscopy (INAM), Forchheim, Germany.
  • Fornasiero F; Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Forchheim, Germany.
  • Schäfer AI; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, US.
Nat Commun ; 15(1): 1114, 2024 Feb 06.
Article en En | MEDLINE | ID: mdl-38321016
ABSTRACT
Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.2 × 10-3 pN overcomes the friction force resulting in insignificant adsorption, whereas lowering the drag force from 2.2 × 10-3 to 4.3 × 10-4 pN increases the adsorbed mass of hormones from zero to 0.4 ng cm-2. At a low drag force of 1.6 × 10-3 pN, the adsorbed mass of four hormones is correlated with the hormone-wall adhesive (van der Waals) force. These findings explain micropollutant adsorption in nanopores via the forces acting on the micropollutant along and perpendicular to the flow, which can be exploited for selectivity.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania