Your browser doesn't support javascript.
loading
Alleviating OH Blockage on the Catalyst Surface by the Puncture Effect of Single-Atom Sites to Boost Alkaline Water Electrolysis.
Lin, Xingen; Hu, Wenfeng; Xu, Jie; Liu, Xiaokang; Jiang, Wei; Ma, Xianhui; He, Dayin; Wang, Zihan; Li, Wanqing; Yang, Li-Ming; Zhou, Huang; Wu, Yuen.
Afiliación
  • Lin X; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • Hu W; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective
  • Xu J; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
  • Liu X; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
  • Jiang W; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
  • Ma X; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • He D; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • Wang Z; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • Li W; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • Yang LM; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective
  • Zhou H; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
  • Wu Y; Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
J Am Chem Soc ; 146(7): 4883-4891, 2024 Feb 21.
Article en En | MEDLINE | ID: mdl-38326284
ABSTRACT
Nonprecious transition metal catalysts have emerged as the preferred choice for industrial alkaline water electrolysis due to their cost-effectiveness. However, their overstrong binding energy to adsorbed OH often results in the blockage of active sites, particularly in the cathodic hydrogen evolution reaction. Herein, we found that single-atom sites exhibit a puncture effect to effectively alleviate OH blockades, thereby significantly enhancing the alkaline hydrogen evolution reaction (HER) performance. Typically, after anchoring single Ru atoms onto tungsten carbides, the overpotential at 10 mA·cm-2 is reduced by more than 130 mV (159 vs 21 mV). Also, the mass activity is increased 16-fold over commercial Pt/C (MA100 = 17.3 A·mgRu-1 vs 1.1 A·mgPt-1, Pt/C). More importantly, such electrocatalyst-based alkaline anion-exchange membrane water electrolyzers can exhibit an ultralow potential (1.79 Vcell) and high stability at an industrial current density of 1.0 A·cm-2. Density functional theory (DFT) calculations reveal that the isolated Ru sites could weaken the surrounding local OH binding energy, thus puncturing OH blockage and constructing bifunctional interfaces between Ru atoms and the support to accelerate water dissociation. Our findings exhibit generality to other transition metal catalysts (such as Mo) and contribute to the advancement of industrial-scale alkaline water electrolysis.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China