Your browser doesn't support javascript.
loading
Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries.
Tsai, Yu-Xi; Chang, Ning-En; Reuter, Klaus; Chang, Hao-Ting; Yang, Tzu-Jing; von Bülow, Sören; Sehrawat, Vidhi; Zerrouki, Noémie; Tuffery, Matthieu; Gecht, Michael; Grothaus, Isabell Louise; Colombi Ciacchi, Lucio; Wang, Yong-Sheng; Hsu, Min-Feng; Khoo, Kay-Hooi; Hummer, Gerhard; Hsu, Shang-Te Danny; Hanus, Cyril; Sikora, Mateusz.
Afiliación
  • Tsai YX; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • Chang NE; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • Reuter K; Max Planck Computing and Data Facility, 85748 Garching, Germany.
  • Chang HT; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • Yang TJ; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • von Bülow S; Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany.
  • Sehrawat V; Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
  • Zerrouki N; Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France.
  • Tuffery M; Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France.
  • Gecht M; Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany.
  • Grothaus IL; Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
  • Colombi Ciacchi L; Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
  • Wang YS; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • Hsu MF; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
  • Khoo KH; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
  • Hummer G; Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany.
  • Hsu SD; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan. El
  • Hanus C; Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France. Electronic address: cyril.hanus@inserm.fr.
  • Sikora M; Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland. Electronic address: mateusz.sikora@uj.edu.pl.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Article en En | MEDLINE | ID: mdl-38428397
ABSTRACT
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glicoproteínas / Simulación de Dinámica Molecular Límite: Humans Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glicoproteínas / Simulación de Dinámica Molecular Límite: Humans Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Taiwán